UNIVERSITY OF CALIFORNIA, DAVIS Department of Materials Science and Engineering

Professor Gibeling

EMS-249

Fall 2018

COURSE INFORMATION

Course Title:	Mechanisms of Fatigue					
Instructor:	Prof. Jeffery C. Gibeling					
	Office:	2019 Kemper				
	Phone:	(530) 752-7037				
	FAX:	(530) 752-9554				
	E-mail:	jcgibeling@ucdavis.edu				
	Office Hours:	ffice Hours: MW 10:00-11:00AM (and by arrangement)				
Course Meetings:	MWF 9:00-9:50 in 201 Wellman. Additional time will be arranged for one laboratory exercise during the quarter.					
Textbook:	S. Suresh, <u>Fatigue of Materials, Second Edition</u> , Cambridge University Press, Cambridge, 1998.					
Grading Basis:	Homework (4-	5 assignments)		20%		
	Term Paper (du	e Monday, Dec. 3)		30%		
	Final Exam			50%		
References:	Please see sepa	rate list.				

EMS-249 Handout1-2018.doc

UNIVERSITY OF CALIFORNIA, DAVIS Department of Materials Science and Engineering

Professor Gibeling

EMS-249

Fall 2018

COURSE OUTLINE AND READING ASSIGNMENTS

Date	Lecture Topic	<u>Assignment</u> *		
		<u>Chap.</u>	Pages 1	
Sept. 26	Introduction: Historical Overview	1	1-11	
Sept. 28	Introduction: Fatigue Methodology	1	11-18	
Oct. 1	Cyclic Deformation: Experimental Studies & Bauschinger Effect	3	97-104	
Oct. 3	Cyclic Deformation: Cyclic Stress-Strain Curve	3	86-97	
Oct. 5	Cyclic Deformation: Fatigue Life Rules	7	221-231	
			235-237	
Oct. 8	Cyclic Deformation: Fatigue Life Rules	8	256-262	
Oct. 10	Cyclic Deformation: Dislocation Mechanisms	2	39-52	
Oct. 12	Cyclic Deformation: Dislocation Mechanisms	-		
Oct. 15	Cyclic Deformation: Alloying Effects	-		
Oct. 17	Cyclic Deformation: Persistent Slip Bands	2	52-69	
Oct. 19	Cyclic Deformation: Persistent Slip Bands	-		
Oct. 22	Cyclic Deformation: Microstructural Effects	2	69-84	
Oct. 24	Cyclic Deformation: Brittle Materials	5	165-191	
Oct. 26	Nucleation: Stage I Growth	4	132-137	
Oct. 29	Crack Nucleation: Intrusions and Extrusions	4	137-147	
Oct. 31	Crack Nucleation: Intrusions and Extrusions	-		
Nov. 2	Crack Nucleation: Microstructural Effects	4	147-162	
Nov. 5	Crack Propagation: Stage I to Stage II Transition	-		
Nov. 7	Crack Propagation: Experimental Studies	-		
Nov. 9	Crack Propagation: Mechanics of Growth	9	283-307	
Nov. 12	VETERAN'S DAY HOLIDAY	**	******	
Nov. 14	Crack Propagation: Mechanics of Growth	10	331-368	
Nov. 16	Crack Propagation: Single Crystal Results	-		
Nov. 19	Crack Propagation: Polycrystalline Results	-		
Nov. 21	Crack Propagation: Crack Closure Mechanisms	14	483-507	
Nov. 23	THANKSGIVING HOLIDAY	**	******	
Nov. 26	Crack Propagation: Crack Closure Mechanics	14	507-537	
Nov. 28	Crack Propagation: Small and Short Cracks	15	541-568	
Nov. 30	Crack Propagation: Mechanistic Models of Crack Growth	-		
Dec. 3	Crack Propagation: Brittle Materials	11	383-399	
Dec. 5	Crack Propagation: Brittle Materials	-		
Dec. 7	Crack Propagation: Bone	-		

FINAL EXAMINATION: Thursday, December 13, 2018, 3:30-5:30 PM

* All reading assignments are from the text by Suresh, Second Edition

COURSE OUTLINE

I. INTRODUCTION TO FATIGUE

- A. Historical Overview
- B. Examples of Fatigue in Engineering Structures
- C. Physical Mechanisms of Fatigue

II. CYCLIC DEFORMATION

- A. Phenomenological Description of Cyclic Deformation
 - 1. Experimental methods
 - 2. Hysteresis loops and saturation
 - 3. Cyclic hardening and softening
 - 4. The Bauschinger effect
 - 5. Cyclic stress-strain curves
 - 6. Fatigue life rules
 - a. stress-based rules
 - b. strain-based rules
 - c. effect of mean stress
- B. Dislocation Processes in Cyclic Deformation
 - 1. Studies of single crystals
 - 2. Dislocation structure and persistent slip bands (PSB's)
 - 3. Models of cyclic deformation and PSB formation
 - a. Brown
 - b. Essmann, Gösele and Mughrabi
 - 4. Mechanisms of strain localization
 - a. Planar slip and wavy slip
 - b. Precipitate shearing
 - c. Grain size effects
 - d. Precipitate free zones
- C. Low Cycle Fatigue of Ceramics and Bone

III. FATIGUE CRACK NUCLEATION AND STAGE I GROWTH

- A. Extrusions and Intrusions
- B. Models of Extrusion/Intrusion Formation and Crack Nucleation
 - 1. Wood
 - 2. Cottrell and Hull
 - 3. Neumann
 - 4. Laird
 - 5. Brown
 - 6. Mughrabi
- B. Crack Nucleation in Polycrystalline Materials
- C. Stage I Crack Growth
 - 1. Environmental effects
 - 2. Microstructural effects

IV. STAGE II FATIGUE CRACK GROWTH

- A. Stage I to Stage II Transition
- B. Fracture Mechanics Description of Stage II Growth
- C. Experimental Measurements

- D. Mechanics of Stage II Growth
 - 1. Use of ΔK as a characterizing parameter
 - 2. Paris (power) law
 - 3. Threshold behavior
- E. Microstructural Observations of Stage II Growth
 - 1. Effect of crystal orientation
 - 2. Environmental effects
 - 3. Frequency effects
- F. Near Threshold Growth
 - 1. Environmental effects
 - 2. Microstructural effects
 - 3. Crack closure
 - 4. History effects
 - 5. Small cracks and short cracks
- G. Models of Stage II Growth
 - 1. Laird and Smith
 - 2. Neumann
- H. Fatigue Crack Growth in Ceramics and Bone
 - 1. Microstructure effects
 - 2. Engineering crack growth resistance